GENERALIZED FROBENIUS THEOREM WITH SINGULAR TORSIONS

On $\mathbb{R}^3 = \{(x, y, z)\}$ consider a 1-form

(1)
$$\theta = dz + f(x, y, z)dy,$$

where d(x, y.z) is a smooth (C^{∞}) real valued function defined on an open neighborhood of the origin. We are concerned with the existence of integral manifolds of (1). Suppose that M is an integral manifold of (1). Since $\theta|_M = 0$ we have $(d\theta)|_M = 0$. Now

$$d\theta = (f_x dx + f_y dy + f_z dz) \wedge dy$$

= $f_x dx \wedge dy$, mod θ .

The obstruction to the existence of integral manifolds is the torsion

$$T = f_x.$$

If T is identically zero then by the Frobenius theorem there exists a 1parameter family of integral manifolds.

In order construct examples with singular torsion sets we set

(2)
$$T = f_x = z(z - g(x, y)) = z^2 - zg(x, y).$$

I want z = 0 is the only integral manifold, so that we require

$$\begin{cases} f(x, y.0) = 0\\ f_x = z^2 - zg(x, y). \end{cases}$$

Second condition implies that

$$f(x, y.z) = z^2 x - zG(x, y),$$

where $G_x = g$. Now any pair (G, g) with $G_x = g$ yields the torsion (2).

Example 1. $G(x, yz) = x^2$, g(x, y) = 2x: Let

 $\theta = dz + (z^2x - zx^2)dy$. Then $d\theta \equiv (z^2 - 2zx)dx \wedge dy$, mod θ . Therefore, T = z(z - 2x). The zero set of T is two planes intersecting along y-axis, among which the plane z = 0 is an integral manifold.

Example 2. Let $f_x = z(z^2 - x^2 - y^2)$, so that $f(x, y, z) = z^3x - zx^3/3 - zy^2x$. Then the zero set of the torsion is given by $z(z^2 - x^2 - y^2) = 0$. This variety is the union of the plane z = 0 and the cone $z^2 - x^2 - y^2 = 0$. z = 0 is an integral manifold.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA. E-MAIL ADDRESSES : ckhan@math.snu.ac.kr